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LE'ITER TO THE EDITOR 

Two photon absorption with coherent and partially coherent 
driving fields 

S Chaturvedi, P Drummond and D F Walls 
Department of Physics, University of Waikato, Hamilton, New Zealand 

Received 2 September 1977 

Abstract. A model of two photon absorption in a cavity with an external driving field is 
presented. Phase and amplitude fluctuations in the driving field are taken into account to 
model a partially coherent multimode source. The photon statistics of the light in the 
cavity are investigated through a calculation of the second-order correlation function of 
the light field in the steady state. 

For a coherent driving field the field inside the cavity will exhibit photon antibunching 
for low intensities. As the fluctuations in the driving field are increased the photon 
antibunching is lost. 

For a partially coherent field, g'*'(O) is reduced with increasing laser intensity. This 
reduction with laser intensity is slower with increasing laser amplitude fluctuations. This 
could provide a possible explanation for the recent experimental observations of Kransin- 
ski and Dinev. 

We consider a model of two photon absorption from a single-mode field inside a 
cavity. The single-mode field is pumped by an external driving field. We include phase 
and amplitude fluctuations in the driving field to simulate a partially coherent multi- 
mode laser. A steady state field of finite intensity may be achieved inside the cavity. 

The model differs in this respect from previous classical (Weber 1971) and quan- 
tum (Chandra and Prakash 1970, McNeil and Walls 1974, Simaan and Loudon 1975, 
Every 1975, Paul et a1 1976) treatments of two photon absorption which have no 
driving field and hence only consider the transient situation. (A steady state is 
achieved in a related model where the two photon absorber is placed inside the laser 
cavity (Bandilla and Ritze 1976).) The above quantum treatments do not correctly 
model a coherent or partially coherent field since they represent the field as a 
statistical mixture of number states. In our analysis these fields are correctly charac- 
terised using the coherent state representation. 

We follow the treatment of McNeil and Walls (1974) for the two photon ab- 
sorption process. The two photon absorbing medium is characterised by the reservoir 
operators r and rt. The Hamiltonian for the two photon absorber in a cavity with an 
external driving field is 

H = Ho+ Hi 

HO = hoa + HR (1) 

H I  = hK(2)(at2r+Q2rt)-ih(E*(t) eiota - E ( t )  ,-'"'at 

where HR is the reservoir Hamiltonian, U and ut are the creation and annihilation 
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operators for the light field; K ( ~ )  is the dipole matrix element for the two photon 
absorption process and e ( t )  is the complex amplitude of the driving field which is 
assumed on resonance with the cavity mode of frequency o. 

The master equation for the density operator p of the field mode in the interaction 
picture is 

aP 1 2 - = zd (2a2pu t2 - at2a2p -pa t2a2) -[ae*(t) - U %(t) ,  p ]  
at 

where d 2  is the two photon absorption rate and is proportional to I K ( ~ ) I ~ N  where N is 
the density of absorbing atoms. 

This may be written in equivalent c-number form using the P-representation 
(Glauber 1963) 

p = J P(a ,  t)(a)(aI d2a. (3) 

Following the techniques described in Louise11 (1973) this yields the following Fok- 
ker-Planck equation for P(a, t): 

This Fokker-Planck equation may equivalently be written as the following Langevin 
equations (Gikhman and Skorokhod 1971, Gardiner and Chaturvedi 1977): 

(These are Ita stochastic differential equations in that the equations for the moments 
of P ( a )  as given by equation (4) are reproduced by equation (3.) v1 and 772 are 
independent noise sources with 

In the case of a completely coherent driving field ~ ( t )  is a constant. However we wish 
to allow for the possibility of phase and amplitude fluctuations in the driving field. To 
this end we write e ( t )  as 

e ( t )  = v ( t )  e'""'. (7) 

~ ( t )  = a ( t )  e-'""' 

Defining 

(8) 
equations (5 )  may be written as 

* - = v( t )  -d2@*/3)fl * - idp*q2(t) + id(t)p*. 
dt 
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Elementary laser theory suggests the following stochastic properties for the phase: 

i ( t )  = Y ( t )  ( y ( t ) y ( t ’ ) )  = r - t ‘ )  (10) 

and amplitude: 

v ( t )  = vo+ v1(t) 

(vim = 0 

(vl(t)vl(t’)) = a e -bll-t’l 

(see for example Haken 1970). 
Equations (9) may be written as 

(12a) 

(126) 

dP - = YO - d ’(p *P)P + idpv 1 (t ) - ir(t)P + V I  ( t )  dt 

dt 
-= dP* YO -d2(p*P)P* - idp*v2(t) +iy(t)P* + v l ( t ) .  

We wish to calculate the second-order correlation of the light field in the steady state. 
Neglecting fluctuations the steady state solution is 

po = P O *  = (vo/d2)1/3. (13) 
We shall solve equations (12) by a perturbation expansion about this steady state 
solution valid for vo>>d(p), y@), V I  by substituting 

P = P o + P 1  (14) 

d P  i%vl(t)-iPoy(t)+ n ( t )  
-( dt P:’ l )  =-A(;;) +( -idP0~2(f) +iPoy(t) + vi(t) 

we have 

(15) 

where 

A = P i d 2 ( l  2 1  2). 

Equation (14) has the solution 

(16) 

The correlation functions may be calculated using the correlation properties (10) and 
(1 1) of the noise sources. The correlation matrix in the steady state is 

(iBpl(f)) = lo‘ d t t  e-A(t-r’) 

:‘w 

where 
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Using the result derived in Chaturvedi et a1 (1977) we obtain from equation (17) the 
following result: 

C, = 
(det A)B -(A -Tr A)B(A -Tr A )  

2(Tr A)(det A )  

i r  a 1 i r  \ 6 + g + m ( b  +3&d2)' - 3 - 2  
(18) 

With this result we may determine the steady state correlation functions of the cavity 
mode. 

The mean photon number is: 

The correlation function is: 

The normalised second-order correlation function for b = 0, i.e. a long correlation 
time of the amplitude fluctuations, may be written as 

We note that to this order in r the phase fluctuations do  not show up in g:?'(O). We 
discuss this result for the cases of a fully coherent field and a partially coherent field. 

( a )  Coherent field 

For a perfectly coherent driving field a = b = 0 and 

g"'(0) = 1 - (1 /3 i i ) .  (22)  

Hence photon antibunching g"'(0) < 1 may be expected to be observable for low light 
intensities, i.e. ti - 1. 

A calculation of the two-time correlation function using the quantum regression 
theorem (Lax 1968) yields 

g"'(7) = 1 + (g"'(0) - 1) (23)  
where 

1 
3ii d 2 '  rc = - 
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For ii = 1 this gives a correlation time of the order of the inverse of the two photon 
absorption rate. 

The photon count rate may be estimated as follows. The extraction rate of the 
photons from the cavity must be less than the rate required for the light field to reach a 
steady state. This relaxation time is given by T ~ ,  hence the photon count rate must be 
less than iid’. Hence in order to observe photon antibunching which from equation 
(22) requires ii - 1, a two photon absorber with a large d 2  is required. 

Photon antibunching as a result of two photon absorption from a coherent light 
beam has been predicted by several authors (Chandra and Prakash 1970, Tornau and 
Bach 1974, Simaan and Loudon 1975, Every 1975, Paul et a1 1976). However all 
these analyses are for the transient situation where an initially coherent field is 
.approximated by a Poissonian ensemble of number states. 

( b )  Partially coherent fields 

For a partially coherent driving field one sees from equation (21) that the photon 
antibunching may be lost owing to the amplitude fluctuations in the driving field. It 
will therefore be necessary to achieve sufficient two photon absorption with stabilised 
coherent lasers if photon antibunching is to be observed. 

In the high intensity limit we may neglect the term -1/3ii and write g‘2’(0) as 

(2) 4 a h )  g (0)=1+-- 
9 vo’ , 

where a(vo)  gives the intensity dependence of the amplitude correlation function in 
equation (11). Thus g‘”(0) decreases as the ratio of the variance of the amplitude 
fluctuations over the square of the amplitude. This result holds for partially coherent 
fields but not fully chaotic fields where a(v0)- v: and the perturbation expansion 
breaks down. The result given by equation (24) is in qualitative agreement with the 
recent experiments of Kransinski and Dinev (1976) on two photon absorption from a 
pulsed dye laser. They observed a slower decrease of g‘”(0) with the laser intensity 
than predicted by the analysis of Weber (1971). 

Equation (24) predicts a slower decrease of g”’(0) with laser intensity as the laser 
amplitude fluctuations are increased. As such this could provide an explanation for the 
observations of Kransinski and Dinev (1976). 
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